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ABSTRACT
In this paper we propose an explicit form of knowledge-based
programming. Our initial motivation is the distributed im-
plementation of game-theoretical algorithms, but we ab-
stract away from the game-theoretical details and describe
a general scenario, where a group of agents each have some
initially private bits of information which they can then
communicate to each other. We draw on existing litera-
ture to give a formal model using modal logic to represent
the knowledge of the agents as well as how that knowledge
changes as they communicate. We sketch an implementa-
tion which enables processes in a distributed system to ex-
plicitly evaluate knowledge formulae. Then we prove that
the implementation captures the formal model, and there-
fore correctly re�ects the general scenario. Finally we look
at how our approach lends itself to generalisations, and dis-
cuss application perspectives.

Categories and Subject Descriptors
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1. INTRODUCTION
In knowledge-based programming [7, 3], knowledge oper-

ators are used as a conceptual tool for the speci�cator of
an algorithm. Knowledge operators do not, in such an ap-
proach, appear explicitly in the resulting so-called standard
program. Rather, that program is proved to behave equiva-
lently to the knowledge-based speci�cation. The knowledge
ascribed to the processes is never actually computed by the
processes or otherwise made explicitly accessible to them.
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We are motivated by the distributed implementation of
game-theoretical algorithms that involve (or at the very least
are facilitated by) explicit reasoning about knowledge and
the e�ects of communication. Thus we propose, in contrast
to the existing approach of knowledge-based programming,
to make knowledge operators available for use in programs
by giving algorithms that evaluate knowledge formulae.
Several rich platforms for multi-agent programming have

been proposed (see e.g. [5] for a recent overview). While
these often do provide for explicit knowledge operators, we
are aware of no instances in which higher-order knowledge
plays a role. Higher-order knowledge is knowledge about
knowledge, as in `I know that you know that p'.
In situations of interaction, this higher-order knowledge

can be as important as factual knowledge for describing
an agent's environment. The speci�c interactive setting
we have in mind involves iterated elimination of dominated
strategies [11] in pre-Bayesian games [1]. However, we ab-
stract from these details in this short paper, to consider a
more general scenario which still illustrates the underlying
issues of communication and knowledge.
We start by designing a model of the epistemic situation

of the agents, which also must represent the changes brought
about by communication. Our model will be a Kripke model
with some implicit temporal structure. We draw on existing
literature [8, 12] for inspiration and philosophical grounding.
We introduce our general communication scenario and for-

mal model in Section 2, describing several clear assumptions
that we make. Some of these guide us in our choice of model,
while others are added to simplify the implementation. Note
that these assumptions serve to keep our illustrative model
and implementation simple, and are not inherent in the idea
of explicit knowledge programming. In Section 3 we describe
the relevant parts of the implementation, i.e. the algorithm
for updating and evaluating knowledge. We prove that these
correspond to the relevant parts of the formal model by
showing that the knowledge computed by a process essen-
tially coincides with the knowledge ascribed to the agent by
the model. Section 4 o�ers conclusions and perspectives for
extensions and applications.

2. MODEL
We consider a scenario in which agents each know the

value of some distinct bits. That is: each agent i has a set
Xi of (names of) bits xi,a whose values he knows, the Xi's
are disjoint, and initially no agent other than i knows the
value of any bits in Xi. We also suppose that all of this is



common knowledge1. We will denote by X the set of all bits
in question

S
i∈N Xi. Agents can then communicate about

the values of bits in X.
Within this general paradigm we consider the speci�c case

in which a number of additional assumptions are imposed.
These assumptions make the model and the implementation
more straightforward, while still allowing us to illustrate the
connection between the model and the implementation.
The assumptions are the following:
1. The communication is private, and the agents do not

have access to a `global clock', and so cannot know, at
any point, whether any actions have taken places that
do not involve them.

2. The communication is synchronous, and takes place
between two agents who can identify each other. A
communicated message thus becomes common knowl-
edge between the two involved agents.

3. All communication is of the following type: Agent i
tells agent j (truthfully) the value of some xi,a ∈ Xi.

4. The values of the bits do not change over time.
5. These assumptions are common knowledge.

The �rst two assumptions are inherent in our choice to base
our implementation on the formalism of Communicating Se-
quential Processes (CSP, [10]). The third assumption is a
restriction on the kinds of messages that we will model, and
constitutes a natural place for future generalisations. The
last assumption, intuitively speaking, is a consequence of
the fact that anything that holds everywhere in our model
is common knowledge. None of these assumptions are cru-
cially tied to the basic idea of explicit knowledge program-
ming that we are presenting here.
A natural interactive model for knowledge, described for

example in [8], is given by (multi-agent) Kripke models. A
Kripke model consists of a set of �worlds� Ω along with,
for each agent i, a relation Ri ⊆ Ω×Ω stating which worlds
are indistinguishable for i, and a function V which gives, for
each bit xi,a, the set of worlds at which xi,a is 1.
Consider the standard multi-modal language LN (cf. [4]):

ϕ ::= xi,a | ϕ ∧ ϕ | ¬ϕ | �iϕ

This language can be evaluated using the standard modal
semantics. The key semantic clause is that for the knowledge

modality: ω � �iϕ
df⇔ ∀ω′(ωRiω

′ ⇒ ω′ � ϕ) for ω ∈ Ω.
In order to de�ne the Kripke model that corresponds to

the epistemic situation of the agents in our scenario, we will
make use of the notion of a protocol.2 Given a set of atomic
events Σ, we denote by Σ∗ the �nite sequences of elements of
Σ. We will call these histories. A protocol over a set Σ is
just a set of histories, i.e. a subset of Σ∗. A protocol speci�es
which sequences of events could in principle happen, that
is, which events are `legal' in a given context. Now, in our
scenario the events involving the agents are private messages
from some agent i informing another agent j of the value
of some bit xi,a. Notice that there are in some sense two
di�erent events here: the one in which xi,a = 1 and the

one in which xi,a = 0. We will denote those events ei→j
a

and ei→j
¬a respectively, and use ei→j

∗a when we mean either

1A fact p is common knowledge in a group just if everyone
knows that p, everone knows that everyone knows that p,
and so on ad in�nitum
2Our presentation is technically similar to [12], and is in the
same spirit. See also [8] for a general discussion of the kind
of history-based structures we use as a model.

of these. Those events will be legal in di�erent contexts,
depending on whether they are truthful or not.
Thus the protocol depends on what is true, so we will

introduce an additional type of event, which is not in the
control of any agent in our scenario, but can be thought of
as a `move of nature'. In such a move Y ⊆ X, the bits Y
whose values are 1 are chosen, and all others get the value
0. It should be clear that (i) the fact that messages are
truthful imposes the restriction that ei→j

a can occur just if
xi,a = 1 (and ei→j

¬a just if xi,a = 0). We also know that (ii)
the values of bits are �xed. It turns out that these two facts
(i) and (ii) are enough to de�ne a protocol which represents
the scenario we have described. Let ΣY be the set of events

ei→j
∗a that are compatible with Y ; i.e. ΣY

df

= {ei→j
a | xi,a ∈

Y } ∪ {ei→j
¬a | xi,a /∈ Y }. Then we can de�ne the protocol H

as follows:

H df

= {ε} ∪ {(Y, e1, . . . , el) | Y ⊆ X ∧ ∀1 ≤ k ≤ l, ek ∈ ΣY }

where ε denotes the empty sequence. Again inspired by [12],
we will consider the local events Ei of each agent i. In our
case Ei = {ei→j

∗a | xi,a ∈ Xi} ∪ {ej→i
∗a | xj,a ∈ Xj}: those

events in which i participates. Of all other communication
events, i is completely ignorant: she is not unaware that
other events might be taking place, but they would all be
taking place `behind her back'. Using local events we de�ne
local histories: λi : Σ∗ → Σ∗ is the projection de�ned

recursively with λi(ε)
df

= ε, λi(Y )
df

= Xi ∩ Y , and

λi(h, e)
df

=


(λi(h), e) if e ∈ Ei

λi(h) otherwise

We can now de�ne the Kripke model that captures the sce-
nario we want to model. We let M = (H, Ri, V )i∈N , where

• hRih
′ df⇔ λi(h) = λi(h

′);

• V (xi,a)
df

= {(Y, h) ∈ H | xi,a ∈ Y }.

We take the philosophical grounding of Kripke models to
be su�cient to claim that the world (Y, h) captures the in-
tuitively described scenario, in the sense that any formula ϕ
holds at (Y, h) in the model M just if it intuitively should.
In the next section we will describe part of the implemen-

tation and show that it, in turn, captures this formal model.

3. IMPLEMENTATION
We implement each agent i ∈ N by a process with the

same name i and mark its local variables by superscript i.
Each process i ∈ N has the following local variables:

• xi
j,a for j ∈ N, xj,a ∈ Xj , holding ¾ or the value of xj,a,

• commi
j,a for j ∈ N \ {i}, xi,a ∈ Xi, holding > or ⊥.

The variables are initialised as follows:

xi
j,a :=

(
xi,a if j = i

¾ otherwise

commi
j,a := ⊥.

To reason about this implementation, it will be useful to
talk about program states, which are tuples consisting of
all the variables of each process. We use the letter ρ to refer
to program states, and will think of them as functions giving
values to variables, so we can write for example ρ(xi

j,a) = 1.



Messages are of the form mi→j
∗a , where i informs j about

the value of xi,a. Upon exchange of mi→j
∗a , the involved

processes update some of their variables as follows:

xj
i,a :=

(
0 if ` ∗ a' = `¬a'

1 if ` ∗ a' = `a'

commi
j,a := > .

A message mi→j
∗a is truthful in a program state ρ just

if ` ∗ a' = `¬a' ⇔ ρ(xi
i,a) = 0. In accordance with our

assumptions, we only allow truthful messages.
An essential part of the implementation is the evaluation

of knowledge formulae. These are formulae from a limited
modal language LK , de�ned as follows:

ϕ ::= xi,a = 1 | xi,a = 0 | Kiϕ

The intended meaning of Kiϕ is that process i knows ϕ.
Given an arbitrary sequence s = (i1, . . . , il) of agents from
N , we write Ksϕ to abbreviate Ki1 . . . Kilϕ, and we de�ne
s{} := {i1, . . . , il}.
Each process i can evaluate any LK-formula Ksxj,a = v

as follows (note that possibly j = i):8><>:
xi

j,a = v if s{} ⊆ {i, j}
commi

k,a ∧ xi
i,a = v if s{} = {i, k} and k 6= i = j

⊥ otherwise.

We do not have space to give the detailed intuitions be-
hind this case distinction, instead we now give a more rigor-
ous demonstration to the e�ect that the implementation is
correct. The aim of the implementation is to make the im-
plicit knowledge of the processes explicitly available to them.
The remainder of this section is devoted to showing that

the implementation does this in a coherent way. That is, we
will demonstrate that the program implements the epistemic
model which we described in Section 2.
If the program state is ρ then we denote by κi(ρ) those

LK-formulae that i evaluates to be >.
What we want to show is that at any point in any run

re�ecting a program execution, all knowledge formulae are
evaluated with the same result as in a certain corresponding
world of the Kripke model. We reach this world by map-
ping any initial program state to the intuitively correspond-
ing world and then, for any sequence of truthful messages,
applying the equivalent sequence of events. We then show
that, in the obtained program state ρ, the knowledge for-
mulae ϕ ∈ κi(ρ) which i evaluates as true are exactly those
for which M, ω |= �iϕ in the corresponding world ω, that
is, that i knows in ω.
An initialisation is the set {xi,a ∈ X | xi,a = 1}.

Notice that this is the same as a `move of nature', as de-
scribed in Section 2. A run σ is a sequence (Y, m1, . . . , mk),
where Y is an initialisation and each ml is a truthful mes-
sage. Any run uniquely determines on the one hand a pro-
gram state ρσ, and on the other hand a world ωσ. The
program state is obtained according to the algorithms de-
scribed above. The world is obtained straightforwardly, by
translating each message mi→j

∗a to an event ei→j
∗a . Thus

the run (Y, mi1→j1
∗a1 , . . . , m

ik→jk
∗ak

) is mapped to the world

(Y, ei1→j1
∗a1 , . . . , e

ik→jk
∗ak

).
Given some world ω in a model M, let Thi(ω) = {ϕ ∈

LN | M, ω � �iϕ} be the set of LN -formulae which i knows

to hold. Now such a set clearly also de�nes a set of LK-
formulae. Speci�cally, for any set Γ of LN -formulae, let ΓK

be the result of replacing, for all j ∈ N , all instances of �j

with Kj and then restricting to LK . We are now ready to
state formally that the computed knowledge is correct:
Proposition. ThK

i (ωσ) = κi(ρσ).

Proof sketch. Take any formula ϕ ∈ LK ; then ϕ is
of the form Ksxj,a = v; without loss of generality consider
the case where v = 1. First show that if the cardinality
of s{} ∪ {i, j} is greater than 2, then ϕ /∈ κi(ρσ), and ϕ /∈
ThK

i (ωσ). Then we consider the various possible cases when
#(s{} ∪ {i, j}) ≤ 2. That is, if s{} ∪ {i, j} = {i, k}, we have
one of the following (a) i = j = k; (b) i 6= j = k; or (c)
i = j 6= k, for which for the proofs are similar. For example,
in case (b) we show that:

ϕ ∈ κi(ρσ) ⇔ ρσ(xi
j,a) = 1 ⇔

σ = (. . . , mj→i
a , . . .) ⇔ ωσ = (. . . , ej→i

a , . . .)
...⇔

ωσ |= �ixj,a
...⇔ ωσ |= �i�sxj,a ⇔

Ksxj,a = 1 ∈ ThK
i (ωσ).

The more involved parts, including the dotted equivalences
(

...⇔), use some standard modal logic reasoning.

4. CONCLUSIONS AND OUTLOOK
We have presented an approach that enables processes to

explicitly use knowledge formulae in order to reason about
their environment, which includes each other's knowledge.
We have illustrated this approach sketching a simple imple-
mentation, and have shown the correctness of the implemen-
tation with respect to an epistemic model.
The simplicity of the implementation is mainly due to the

clear assumptions that we stated in Section 2. For exam-
ple, the fact that the order in which messages are sent does
not matter simpli�es the mechanism needed to keep track of
them. The facts that bits do not change over time and that
communication is synchronous removes the necessity of tem-
poral reasoning. Furthermore, we consider a very restricted
kind of knowledge formulae. Remember that these restric-
tions are not inherent to explicit knowledge programming,
but serve to keep the presentation simple.
Still, the level of generality which we describe already al-

lows for concrete and interesting applications. Our initial
motivation, mentioned in Section 1, is a game-theoretical
setting where each player initially only knows his own pay-
o�s. In order to eliminate dominated strategies, players
also need to reason about which strategies other players
will eliminate, and to that end they need to reason about
which strategies other players will think yet other players
will eliminate, etc. For this kind of reasoning it is su�cient
to evaluate knowledge formulae of exactly the form we have
considered (where the bits concern payo�s).
Algorithms like this can now be implemented in a general

way using knowledge formulae. When more types of mes-
sages are allowed or other assumptions are lifted, only the
knowledge evaluation function needs to be extended, while
the actual algorithms can stay unchanged.
More generally, our approach suggests a di�erent view on

program synthesis for knowledge-based programming. In-
stead of following the suggestion from [7] to synthesise a
complete standard program from a knowledge-based one,
one would implement a module containing the knowledge



evaluation function and the epistemic operations (for exam-
ple, the e�ects of communication). The program itself would
remain knowledge-based.
In order to achieve this kind of program synthesis, it is

necessary to have a natural and �exible model. We think
that Kripke structures lend themselves to this task. How-
ever, we do not claim that the model we have proposed
is necessarily natural or �exible enough. We are aware of
the parallels with Interpreted Systems [8], and also the con-
nections with Dynamic Epistemic Logic (DEL, [2]), and we
believe that both of these approaches are of relevance in
working out such a method of program speci�cation and syn-
thesis. For example, it is straightforward to give a so-called
`action model' from DEL which can be used to generate the
model in Section 2; thus variations of the model could be
designed using the modular approach of DEL.
Another way to extend our results would be to enrich the

language LK whose formulae the processes evaluate. Certain
extensions could be straightforwardly implemented, for ex-
ample allowing for negated K operators; others require more
changes. The language available to the processes should be
tailored for the speci�c application. In our motivating set-
ting, it su�ces to be able to evaluate LK-formulae.
A feature that is notably absent from our model is that

of questions, i.e. requests for information rather than just
exchange of information. These requests might themselves
be viewed as carrying information, and so in many sce-
narios (including the game-theoretical scenario which mo-
tivates our model), their epistemic e�ects can be signi�cant.
In a more realistic communication setting there will also
be strategic aspects to communication [9], especially if one
wants to lift the truthfulness assumption.
We will now brie�y sketch two intriguing long-term ap-

plication perspectives. The �rst concerns the area of multi-
agent planning. Most existing approaches (see e.g. [6]) fall
into two categories. In one, agents cooperate and so the
focus is on how to optimally distribute the steps necessary
to reach their goals. In the other, agents assume that other
agents (or the environment) always act in the worst possi-
ble way, which game-theoretically corresponds to a zero-sum
game. However, in the more general case, preferences will
neither be totally aligned nor totally opposing. Rational
agents should be able to model other agents, �gure out how
they will act and react, and take this into account in their
plans. Higher-order reasoning about knowledge and prefer-
ences is crucial for this game-theoretical planning. Having
such facilities on the level of the programming language may
greatly ease implementation of these algorithms, yet as men-
tioned in Section 1, existing multi-agent platforms usually
focus on factual knowledge.
The other application perspective is to computer games.

While the game-theoretical planning described above could
generally be of interest for computer-controlled opponents
in strategy games, there is a much broader range of pos-
sible applications. Just to pick an example, any computer
game which aims at creating a convincing social interac-
tion needs to simulate the kinds of higher-order reasoning
which go on in real-life social interaction. Concretely, if a
computer-controlled character C in a role-playing game only
o�ers information to the (human) player P of which he can-
not deduce that P knows that C knows that P knows it,
the player will perceive the scene to be much more natural
than if C always stupidly repeats the same phrases. While

computer games have implemented this kind of intelligence
to certain degrees, using higher-order knowledge formulae
directly in the algorithms would, again, ease the task of the
programmer and enhance the possibilities of behaviour of
computer-controlled characters.
While the kind of mechanisms we propose could be im-

plemented ad hoc, it seems natural to provide higher-order
knowledge operators as an abstraction layer, simplifying the
remaining program and increasing modularity. We intend
our implementation to be a simple but clear foundation
which will, due to the explicit assumptions we have made
and the formal model we have constructed, enable us to see
what extensions are feasible and how they can be realised.
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